Basic Mechanisms in Stem Cell Biology
Stem cells raise enormous hope and expectations for regenerative medicine. Since decades hematopoietic stem cell transplantation has become routine treatment for many blood disorders and cancer and is a prime example for successfully applied regenerative medicine. However, many fundamental questions must be addressed for improved therapeutic options in the future.
We focus our research on basic mechanisms that control stem cell fate decisions (self-renewal vs. differentiation, lineage choice, quiescence vs. proliferation). These fate decisions need to be strictly balanced for normal tissue regeneration and for emergency situations, and are dysregulated in diseases (e.g. cancer). We utilize various organ stem cell systems (hematopoietic cells, mammary gland, colon) from mice and humans to unravel molecular and functional clues how these decisions are integrated in normal stem cell biology and how malignant stem cells can be targeted for innovative disease treatment.
Our Mission
We need a detailed knowledge about normal stem cell behavior to create innovative therapies for dysregulated stem-cell driven diseases.